Extensions 1→N→G→Q→1 with N=C22⋊Q16 and Q=C2

Direct product G=N×Q with N=C22⋊Q16 and Q=C2
dρLabelID
C2×C22⋊Q1664C2xC2^2:Q16128,1731

Semidirect products G=N:Q with N=C22⋊Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
C22⋊Q161C2 = C23⋊Q16φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:1C2128,334
C22⋊Q162C2 = C4⋊C4.6D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:2C2128,335
C22⋊Q163C2 = C24.12D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:3C2128,338
C22⋊Q164C2 = C233Q16φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:4C2128,1921
C22⋊Q165C2 = C24.123D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:5C2128,1922
C22⋊Q166C2 = C42.269D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:6C2128,1943
C22⋊Q167C2 = SD1610D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:7C2128,2014
C22⋊Q168C2 = D4×Q16φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:8C2128,2018
C22⋊Q169C2 = D45Q16φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:9C2128,2031
C22⋊Q1610C2 = C42.465C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:10C2128,2032
C22⋊Q1611C2 = C24.178D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:11C2128,1736
C22⋊Q1612C2 = C24.106D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:12C2128,1739
C22⋊Q1613C2 = Q8.(C2×D4)φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:13C2128,1743
C22⋊Q1614C2 = (C2×Q8)⋊17D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:14C2128,1745
C22⋊Q1615C2 = C42.235D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:15C2128,1849
C22⋊Q1616C2 = C42.355C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:16C2128,1853
C22⋊Q1617C2 = C24.128D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:17C2128,1927
C22⋊Q1618C2 = C24.129D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:18C2128,1928
C22⋊Q1619C2 = C4.162+ 1+4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:19C2128,1933
C22⋊Q1620C2 = C4.172+ 1+4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:20C2128,1934
C22⋊Q1621C2 = C42.273D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:21C2128,1947
C22⋊Q1622C2 = C42.276D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:22C2128,1950
C22⋊Q1623C2 = C42.409C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:23C2128,1955
C22⋊Q1624C2 = C42.411C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:24C2128,1957
C22⋊Q1625C2 = SD166D4φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16:25C2128,1998
C22⋊Q1626C2 = SD168D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:26C2128,2001
C22⋊Q1627C2 = Q169D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:27C2128,2002
C22⋊Q1628C2 = SD163D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:28C2128,2008
C22⋊Q1629C2 = Q164D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:29C2128,2009
C22⋊Q1630C2 = C42.47C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:30C2128,2044
C22⋊Q1631C2 = C42.48C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:31C2128,2045
C22⋊Q1632C2 = C42.51C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:32C2128,2048
C22⋊Q1633C2 = C42.476C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:33C2128,2059
C22⋊Q1634C2 = C42.477C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16:34C2128,2060
C22⋊Q1635C2 = C24.103D4φ: trivial image32C2^2:Q16:35C2128,1734
C22⋊Q1636C2 = C42.226D4φ: trivial image64C2^2:Q16:36C2128,1840

Non-split extensions G=N.Q with N=C22⋊Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
C22⋊Q16.1C2 = (C2×C4)⋊Q16φ: C2/C1C2 ⊆ Out C22⋊Q1632C2^2:Q16.1C2128,337
C22⋊Q16.2C2 = C42.267D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16.2C2128,1941
C22⋊Q16.3C2 = C42.231D4φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16.3C2128,1845
C22⋊Q16.4C2 = C42.361C23φ: C2/C1C2 ⊆ Out C22⋊Q1664C2^2:Q16.4C2128,1859
C22⋊Q16.5C2 = C42.224D4φ: trivial image64C2^2:Q16.5C2128,1836

׿
×
𝔽